Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees
نویسندگان
چکیده
BACKGROUND Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO(2) efflux is crucial for addressing the carbon footprint of creeping degradation. METHODOLOGY We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (13)CO(2) pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO(2). Further, we quantified the overall losses of assimilated (13)C with soil CO(2) efflux. PRINCIPAL FINDINGS (13)C in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO(2) efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO(2) efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. CONCLUSIONS Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e.g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.
منابع مشابه
Forest production responses to irrigation and fertilization are not explained by shifts in allocation
Production increases in intensively managed forests have been obtained by improving resource availability through water and nutrient amendments. Increased stem production has been attributed to shifts in growth from roots to shoot, and such shifts would have important implications for belowground carbon sequestration. We examined above and belowground growth and biomass accumulation and distrib...
متن کاملPulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects.
Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this ...
متن کاملTermination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest.
The introduction of photosynthates through plant roots is a major source of carbon (C) for soil microbial biota and shapes the composition of fungal and bacterial communities in the rhizosphere. Although the importance of this process, especially to ectomycorrhizal fungi, has been known for some time, the extent to which plant belowground C allocation controls the composition of the wider soil ...
متن کاملModeling Carbon Allocation below Ground
Belowground carbon expenditure has been difficult to measure, and even more so to predict. Root growth is influenced by both direct effects on plant metabolism and indirect effects of soil drying and interactions with soil organisms. In Concord grape, crop load may compete with root growth when soil moisture is not limiting. Root lifespan also is difficult to predict but some success can be ach...
متن کاملCarbon allocation and nitrogen acquisition in a developing Populus deltoides plantation.
We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by developmental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 x 1 m) stands were treated with 50, 100 and 200 kg N ha(-1) year(-1) of time-release ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012